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Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture
of functional diversity, microbial community structure, and their ecological determinants
remains a grand challenge.We analyzed 7.2 terabases of metagenomic data from 243 Tara
Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe
to generate an ocean microbial reference gene catalog with >40 million nonredundant,
mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139
prokaryote-enriched samples, containing >35,000 species, we show vertical stratification
with epipelagic community composition mostly driven by temperature rather than other
environmental factors or geography. We identify ocean microbial core functionality and
reveal that >73% of its abundance is shared with the human gut microbiome despite the
physicochemical differences between these two ecosystems.

M
icroorganisms are ubiquitous in the ocean
environment, where they play key roles in
biogeochemical processes, such as carbon
and nutrient cycling (1). With an esti-
mated 104 to 106 cells per milliliter, their

biomass, combined with high turnover rates and
environmental complexity, provides the grounds
for immense genetic diversity (2). These microor-
ganisms, and the communities they form, drive and
respond to changes in the environment, including
climate change–associated shifts in temperature,
carbon chemistry, nutrient and oxygen content, and
alterations in ocean stratification and currents (3).
With recent advances in community DNA shot-

gun sequencing (metagenomics) and computa-
tional analysis, it is now possible to access the
taxonomic and genomic content (microbiome)
of ocean microbial communities and, thus, to
study their structural patterns, diversity, and func-
tional potential (4, 5). The Sorcerer II Global Ocean
Sampling (GOS) expedition, for example, col-
lected, sequenced, and analyzed 6.3 gigabases
(Gb) of DNA from surface-water samples along
a transect from the Northwest Atlantic to the
Eastern Tropical Pacific (6, 7) but also indicated
that the vast majority of the global ocean micro-
biome still remained to be uncovered (7). Never-
theless, the GOS project facilitated the study of
surface picoplanktonic communities from these
regions by providing an ocean metagenomic data
set to the scientific community. Several studies
have demonstrated that such data could, in prin-

ciple, identify relationships between gene func-
tional compositions and environmental factors
(8–10). However, an extended breadth of sam-
pling (e.g., across depth layers, domains of life,
organismal-size classes, and around the globe),
combined with in situ measured environmental
data, could provide a global context and mini-
mize potential confounders.
To this end, Tara Oceans systematically col-

lected ~35,000 samples for morphological, genetic,
and environmental analyses using standardized
protocols across multiple depths at global scale,
aiming to facilitate a holistic study on how en-
vironmental factors and biogeochemical cycles
affect oceanic life (11). Here we report the initial
analysis of 243 ocean microbiome samples, col-
lected at 68 locations representing all main oceanic
regions (except for the Arctic) from three depth
layers, which were subjected to metagenomic Il-
lumina sequencing. By integrating these data with
those from publicly available ocean metagenomes
and reference genomes, we assembled and anno-
tated a reference gene catalog, which we use in
combination with phylogenetic marker genes
(12, 13) to derive global patterns of functional and
taxonomic microbial community structures. The
vast majority of genes uncovered in Tara Oceans
samples had not previously been identified, with
particularly high fractions of novel genes in the
Southern Ocean and in the twilight, mesopelagic
zone. By correlating genomic and environmental
features, we infer that temperature, which we de-

coupled from dissolved oxygen, is the strongest
environmental factor shaping microbiome compo-
sition in the sunlit, epipelagic ocean layer. Further-
more, we define a core set of gene families that are
ubiquitous in the ocean and differentiate variable,
adaptive functions from stable core functions; the
latter are compared between ocean depth layers
and to those in the human gut microbiome.

Ocean microbial reference gene catalog

To capture the genomic content of prevalent micro-
biota across major oceanic regions (Fig. 1A), Tara
Oceans collected seawater samples within the
epipelagic layer, both from the surface water
and the deep chlorophyll maximum (DCM) lay-
ers, as well as the mesopelagic zone (14). From 68
selected locations, 243 size-fractionated sam-
ples targeting organisms up to 3 mm [virus-enriched
fraction (<0.22 mm): n = 45; girus/prokaryote-
enriched fractions (0.1 to 0.22 mm, 0.22 to 0.45 mm,
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0.45 to 0.8 mm): n = 59; prokaryote-enriched
fractions (0.22 to 1.6 mm, 0.22 to 3 mm): n = 139]
were paired-end shotgun Illumina sequenced to
generate a total of more than 7.2 terabases (Tb),
29.6 T 12.7 Gb per sample (14), enabling compar-
ative analyses with the human gut microbiome for
which metagenomic data of the same order of
magnitude have been published {U.S. Human
Microbiome Project, phase I—stool [1.5 Tb; (15)]}
and the European Metagenomics of the Human
Intestinal Tract project [3.8 Tb; (16, 17)].
To generate a reference gene catalog [see also

(16, 17)], we first reconstructed the genomic con-
tent of Tara Oceans samples by metagenomic as-
sembly and gene prediction (18) and combined
these data with those from publicly available
ocean metagenomes and reference genomes (14).
Specifically, ~111.5 million (M) protein-coding nu-
cleotide sequences were predicted and clustered
at 95% nucleotide sequence identity with 24.4 M
sequences from other ocean metagenomes (14)
and 1.6 M sequences from ocean prokaryotic (n =
433) and viral (n = 114) reference genomes (14).
This resulted in a global Ocean Microbial Refer-
ence Gene Catalog (OM-RGC), which comprises
>40 M nonredundant representative genes from
viruses, prokaryotes, and picoeukaryotes (Fig. 1B).
Compared to a human gut microbial reference
gene catalog (16), the OM-RGC comprises more
than four times the number of genes, most of
which (59%) appear prokaryotic (Fig. 1B). Almost
28% of the genes could not be taxonomically an-
notated. A large fraction is, however, likely of viral
origin, because in size fractions targeting orga-
nisms smaller than 0.22 mm, 37% (SD = 9%) of the
profiled sequence data mapped to nonannotated
genes [see also (19)], whereas in prokaryote-
enriched samples, this fraction decreased to 9%
(SD = 2%). As expected, eukaryotic genes (3.3%)
include those from protists (unicellular eukary-
otes) but also from multicellular, larger organisms
whose gametes or fragmented cells may have been
sampled (14).
In total, 81.4% of the genes were exclusive to

Tara Oceans samples, with only 5.11 and 0.44%
overlapping with GOS sequences and reference
genomes, respectively (Fig. 1B), which highlights
the extent of the unexplored genomic potential
in our oceans. Rarefaction analysis showed that
the rate of new gene detection decreased to 0.01%
by the end of sampling (Fig. 1C), suggesting that
the abundant microbial sequence space appears
well represented, at least for the targeted size
ranges, sampling locations, and depths. Genes
found in only one sample amounted to 3.6% of
the OM-RGC, which may originate from localized
specialists.
To complement the work of Tara Oceans Con-

sortium partners who analyzed viral and protist-
enriched size fractions (19, 20) and integrated data
across domains of life (21, 22), we focused our
analyses on 139 prokaryote-enriched samples,
which included 63 surface water samples (5 m;
SD = 0 m), 46 epipelagic subsurface water samples
mostly from the DCM (71 m; SD = 41 m), and 30
mesopelagic samples (600 m; SD = 220 m). Using
this set, we revealed that gene novelty generally
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Fig. 1. Tara Oceans captures novel genetic diversity in the global ocean microbiome. (A) Geographic
distribution of 68 (out of >200 in total) representative TaraOceans sampling stations atwhich seawater samples
and environmental data were collected frommultiple depth layers. (B) Targeting viruses andmicrobial organisms
up to 3 mm in size, deep Illumina shotgun sequencing of 243 samples, followed by metagenomic assembly and
gene prediction, resulted in the identification of >111.5Mgene-coding sequences.The currently largest humangut
microbial reference gene catalog (16) was built with similar amounts of data but from a substantially higher
numberof samples (n= 1,267).Genes identified in our studywere clustered togetherwith >26Msequences from
publicly available data [external genes; see (14)] to yield a set of >40 M reference genes (top left), which equals
more than four times the number of genes in the human gut microbial reference gene catalog (top right). The
combined clustering of genes identified in Tara Oceans samples with those obtained from public resources
allowed us to annotate genes according to the composition of each cluster. For example, a gene was labeled as:
“TARA/GOS” if itsoriginal clustercontainedsequences frombothTaraOceansandGOSsamples.More than81%
of the genes were found only in samples collected by Tara Oceans. A breakdown of taxonomic annotations
(bottom left) shows that the reference gene catalog ismainly composed of bacterial genes (LUCAdenotes genes
that could not unambiguously be assigned to a domain of life). (C) Rarefaction curve of detected genes for 100-
fold permuted sampling orders shows only a small increase in newly detected genes toward the end of sampling.
Thesubplot comparessequencingdepth-normalized rarefactioncurves for 139prokaryoticoceansamples (black)
mapped to the prokaryotic subset of the OM-RGC (24.4 M genes) and the same number of random (100-fold
permuted) human gut samples (pink) mapped to a human gut gene catalog (16).The lower asymptote for the
human gut suggests that the ocean harbors a greater genetic diversity. (D) For the subset of 139 prokaryotic
samples analyzed, the fraction of detected genes that hadpreviously been available in public databases (blue) are
compared to those thatwerenewly identified in samples collectedbyTaraOceans (red).Thebreakdownbyocean
regionanddepths shows that theSouthernOceanand themesopelagic zonehadbeenvastly undersampledprior
to Tara Oceans. NA, not available. Abbreviations: MS, Mediterranean Sea; RS, Red Sea; IO, Indian Ocean; SAO,
South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean; NPO, North Pacific Ocean; NAO, North
Atlantic Ocean; GOS, Sorcerer II Global Ocean Sampling expedition; MetaG, genes of metagenomic origin; RefG,
genes fromreferencegenomesequences; LUCA, last universal commonancestor; SRF, surfacewater layer;DCM,
deep chlorophyll maximum layer; MIX, subsurface epipelagic mixed layer; MESO, mesopelagic zone.
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increased from surface to DCM waters and re-
mained relatively stable across ocean regions,
with overall about half of the genes being novel.
As exceptions to this pattern, we find in South-
ern Ocean (SO) and mesopelagic samples about
80 and 90% of novelty, respectively. In addition
to higher novelty in hitherto uncharted regions,
these patterns likely reflect the detection of rare
organisms by deep sequencing, although seasonal
and locational differences of sampling in relatively
well-studied regions may be additional contrib-
uting factors.
To put the degree of taxonomic novelty into

context, we extracted a total of >14 M metage-
nomic 16S ribosomal RNA gene (16S) tags [16S

mitags; (12)] and mapped these to operational
taxonomic units (OTUs) based on clustering of
reference 16S sequences (23) at 97% sequence
identity. This cutoff has been commonly used to
group taxa at the species level, although it may
rather represent clades somewhere between spe-
cies and genus level (24). The fraction of total 16S

mitags not matching any reference OTUs also
increased with depth but was on average only
5.5% (14). Thus, although the vast majority of
prokaryotic clades detected in TaraOceans meta-
genomes had already been captured by 16S se-
quencing, the OM-RGC now provides a link to
their genomic content.

Diversity and depth stratification
of the ocean microbiome

Given the global scale of Tara Oceans samples,
we assessed patterns of diversity and stratifying
factors of ocean microbial community composi-
tion. 16S mitags identified in our metagenomic
data set mapped to a total of 35,650 OTUs (2937
OTUs; SD = 585 OTUs), and taxonomic and phy-
logenetic diversity were highly (R2 = 0.96) corre-
lated (14). The total richness estimate of 37,470 is
comparable to the numbers from a previous study,
which detected about 44,500 OTUs based on poly-
merase chain reaction (PCR)–amplified 16S rRNA
tags from 356 globally distributed pelagic samples
(25) that were collected in the context of the
International Census of Marine Microbes (ICoMM)
project (26). More than 93% of 16S mitags could
be annotated at the phylum level. We found that
typical members of Proteobacteria, including the
ubiquitous clades SAR11 (Alphaproteobacteria)
and SAR86 (Gammaproteobacteria), dominate
the sampled areas of the ocean both in terms
of relative abundance and taxonomic rich-
ness (27, 28). Cyanobacteria, Deferribacteres,
and Thaumarchaeota were also abundant, al-
though the taxonomic richness within these phyla
was smaller (Fig. 2). Photosynthetic cyanobacterial
taxa such as Prochlorococcus and Synechococcus
were detected in all mesopelagic samples and
contributed about 1% of the abundance (Fig. 2),
which is in line with previous reports suggest-
ing a role for cyanobacteria in sinking particle
flux (29).
To explore the overall variability in community

composition, we performed a principal coordi-
nate analysis (PCoA), which revealed that depth
explained 73% of the variance (PC1 in Fig. 3A).

This is consistent with a vertical stratification of
microbial taxa and viruses according to changes
in physicochemical parameters, such as light,
temperature, and nutrients (30, 31). Given this
vertical stratification, we further characterized
taxonomic and functional richness, between-
sample dissimilarity (b-diversity), total cell abun-
dance, and potential growth rates across three
depth layers. Our results revealed an increase in
both taxonomic and functional richness with
depth, whereas cell abundance, as measured by

flow cytometry, and potential maximum growth
rates (32) decreased with depth (Fig. 3B).
Although increasing species richness from the

surface to the mesopelagic has been reported
locally, e.g., in the Mediterranean Sea (33), our
findings emphasize the global relevance of this
pattern. The observed increase in taxonomic and
functional richness may reflect diversified spe-
cies adapted to a wider range of niches, such as
particle-associatedmicroenvironments in themeso-
pelagic zone (34). In addition, slower growth, due
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Fig. 3. Depth stratification of the ocean microbiome. (A) Principal coordinate (PC) analysis performed
on community composition dissimilarities (Bray-Curtis) of 139 prokaryotic samples based on 16S mitag
relative abundances shows that samples are significantly separated by their depth layer of origin, i.e.,
surface (SRF), deep chlorophyll maximum (DCM), or mesopelagic (MESO). Boxplots of the first PC
illustrate differences between depth layers. Differences between samples from SRF and DCM were
significant, but small compared to those with mesopelagic samples. Abbreviations for ocean regions are
the same as in Fig. 1. (B) For a matched sample set from 20 stations where SRF, DCM, and MESO were
sampled, calculations of within-sample species richness (top left) and between-sample diversities (top-
center; Bray-Curtis) and cell densities per millileter (top right) suggest an increase in species richness
and a decrease in cell density with depth (pairwise Mann-Whitney U-test: P < 0.001), whereas no signif-
icant trend was found for between-sample dissimilarity. For gene functional groups (bottom left and
center), richness increased with depth, whereas between-sample dissimilarity decreased. Minimum po-
tential generation time of microbial communities (bottom right) is predicted to be higher in the meso-
pelagic compared to the epipelagic (EPI).

Abundance Richness

Fig. 2.Taxonomic breakdown of Tara Oceans samples. A phylum-level (class-level for Proteobacteria)
breakdown of relative abundances is shown for all prokaryotic samples from three depth layers along
with the number of detected taxa at the OTU level. SRF, surface water layer; DCM, deep chlorophyll
maximum layer; MESO, mesopelagic zone.
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tomore limited carbon sources in themesopelagic
zone, and higher motility have been suggested
to reduce predation by flagellates and ciliates,
as well as viral infection rates (35). Our meta-
genomic analysis nowprovidesmolecular support
for these models by identifying a significant (P <
0.001) enrichment of chemotaxis and motility
genes in the mesopelagic zone (see below).

Environmental drivers of
community composition

A key question in ocean microbial ecology is the
extent to which limited dispersal and historical
contingency on the one hand, and global disper-
sion combined with selection by environmental
factors on the other, are responsible for contem-
porary biogeographic patterns (4, 5). The relation-
ship between absolute latitude and biodiversity
is an example of such a pattern, albeit one that
is still controversial; while some authors found a
negative correlation (36), others reported maxima
in intermediate latitudinal ranges (10, 37). The
latter is supported by our findings (Fig. 4A), as
an increase in richness with temperature was
found from 4° to about 12°C, followed by a neg-
ative correlation for the remainder of the sam-
pled temperature range (up to 30°C). This is also
congruent with previous reports on oceanic groups
of eukaryotes (38). A modeling study predicted
season as a driver of biodiversity (39). For our
data, however, the association of richness with
temperature and latitude is robust to the con-
founding effect of seasonality (partial Mantel test,
P < 0.01), although more data are needed for a
rigorous statistical evaluation of such questions;
for example, by periodically sampling the ocean
across the globe on the same day (40). In addi-
tion to latitudinal biodiversity patterns, we found
that taxonomic community dissimilarity increased
up to about 5000 kmwithin an ocean region (Fig.
4B). Together, our data support biogeographic
patterns of microbial communities, in line with
previous studies (10, 36, 37).
To further investigate the underlying mech-

anisms, we tested whether samples were more
similar within than across ocean regions by
focusing on surface samples only. If dispersal
limitation rather than environmental selection
dominated, we would expect a higher similarity
within than across ocean regions. By contrast, if
environmental selection explained biogeographic
patterns, we would expect environmental factors
to correlate with community similarity. Previous
studies on selected ocean microbial taxa have
shown a strong impact of light and temperature
(41). For entire community assemblages, how-
ever, expectations are less clear. In a large-scale
meta-analysis, salinity has been suggested as the
major determinant across many (including ocean)
ecosystems and to exceed the influence of tem-
perature (42). In contrast, an analysis of func-
tional trait composition in ocean environments
suggested that temperature and light have stron-
ger effects than nutrients or salinity (10, 43).
A PCoA of taxonomic compositions of surface

samples does not show a clear separation by re-
gional origin, despite showing on average a higher

similarity of communities within than across
ocean regions (Fig. 5A). Instead, temperature was
found to strongly correlate with PC1 (R2 = 0.76).
Thus, to verify the geographic independence of
this pattern and to identify environmental drivers
in our data set, we correlated distance-corrected
dissimilarities of taxonomic and functional com-
munity composition with those of environmental
factors (Fig. 5B). Overall, temperature and dis-
solved oxygen were the strongest correlates of
both taxonomic and functional composition in
the surface layer (Fig. 5B), while no significant
correlation was found for salinity. Nutrients were
only weakly correlated and, except for silicate,

after the removal of a few extreme locations with
very low temperatures, the correlations were not
statistically significant.
Finally, we tackled the challenge of disentan-

gling the high correlation between temperature
and dissolved oxygen (R2 = 0.87) in surface
waters. To this end, we first used a machine
learning–based approach (44) to independently
model associations of each of these two factors
with taxonomic and functional composition with-
in surface samples (Fig. 6A). We then tested the
strength of these associations in DCM layers,
where the correlation between the two factors is
much weaker (R2 = 0.16), which allowed us to

1261359-4 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 5. Environmental drivers of surface microbial community composition. (A) Principal coordinate
(PC) analysis of surface samples shows that samples are not clearly grouped by their regional origin
(top), but rather separated by the local temperatures as shown by the strong correlation (R2: 0.76)
between the first PC and temperature (bottom). (B) Pairwise comparisons of environmental factors are
shown, with a color gradient denoting Spearman’s correlation coefficients. Taxonomic [based on two
independent methods: mitags (12) and mOTUs (13)] and functional (based on biochemical KEGG modules)
community composition was related to each environmental factor by partial (geographic distance–
corrected) Mantel tests. Edge width corresponds to the Mantel’s r statistic for the corresponding distance
correlations, and edge color denotes the statistical significance based on 9,999 permutations.

Fig. 4. Latitudinal diversity and distance decay of ocean microbial communities. (A) Plotting spe-
cies richness against the temperature of sampling location shows an initial increase in richness up to
about 15°C followed by a decrease toward warmer waters. Richness is highest in mid-latitudinal ranges
rather than toward the equator.The color gradient denotes absolute latitudes (with increasing warmth of
color from poles to equator). Shape of symbols denotes whether a sample originated from the Northern
(circle) or Southern Hemisphere (square). (B) Pairwise microbial community dissimilarity (Bray-Curtis)
based on relative mitag OTU abundances increases with distance between sampling stations up to about
5000 km. Pairwise distances were calculated only within ocean regions.
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effectively decouple dissolved oxygen from tem-
perature. The surface-fitted model of temperature
continued to achieve high prediction accuracy
when applied at the DCM layers, whereas the
oxygen model could not be generalized across
depths. To illustrate the strength of these asso-
ciations, we show that temperature could be pre-
dicted with an explained variance of 86%, using
only species abundance as information (Fig. 6B).
These results were validated with data from the
GOS project (R2 = 0.66) despite differences in sam-
pling and sequencing procedures between the
two studies (Fig. 6B).
Taken together, our data suggest that geo-

graphic distance plays a subordinate role and re-
veals temperature to be the major environmental
factor shaping taxonomic and functional micro-
bial community composition in the photic open
ocean. Thus, a global dispersal potential for micro-
organisms (45) and subsequent environmental
selection may, at least for some taxa, represent a
mechanism for driving patterns of microbial bio-
geography. At the same time, localized adapta-
tions by natural selection will lead to differences
in spatially distant populations of phylogeneti-
cally similar organisms, so that characterizing
these variations at strain-level resolution rep-
resents an important challenge for the future.

Core functional analysis
between ecosystems

The generation of nonredundant gene abundance
profiles from a large number (e.g., >100) of sam-
ples can be used to define a set of gene families,
as a proxy for gene-encoded functions, which are

ubiquitously found (core) in microbial communi-
ties. Such an analysis was performed for the human
gut (17), which represents a fundamentally differ-
ent microbial ecosystem (anoxic, host-associated,
dominated by heterotrophs). However, owing to
the lack of other large-scale, ecosystem-wide meta-
genomic data sets, it has been unknown howmany
of these core functions are shared with any other
ecosystem. Thus, we first mapped the OM-RGC to
known gene families, represented by clusters of
orthologous groups [OGs, (46)] and selected pro-
karyotic genes to ensure comparability between
the data sets. In total, we detected 39,246 OGs
(19,524 OGs per sample; SD = 2682 OGs). Of those,
the number of shared OGs rapidly decreased with
sample size, reaching a minimum of 5755 ocean
core OGs that were present in all (n = 139)
prokaryote-enriched samples (Fig. 7A). Overall,
we found that 40% of these ocean core OGs were
of unknown function, compared to only 9% of
the human gut core OGs (Fig. 7B).
We also sought to determine the overlap of

core functions between the two ecosystems and
to identify differentially abundant core functional
categories (47), and contrast their relative im-
portance in each of them (Fig. 7C). The ocean
core contained almost twice as many OGs as the
gut core, which may reflect the sampling of a
greater number and higher complexity of niches
in the ocean ecosystem than in the mostly anoxic,
thermally stable human gut. However, despite
large physicochemical differences between the
two ecosystems, we found that most of the pro-
karyotic gene abundance (73% in the ocean; 63%
in the gut) can be attributed to a shared functional

core. Significant differential abundances between
the two ecosystems were found across many func-
tional categories. Most notably, those for defense
mechanisms, signal transduction, and carbohy-
drate transport and metabolism were considera-
bly more abundant in the gut, whereas those for
transport mechanisms in general (coenzyme, lipid,
nucleotide, amino acids, secondary metabolites)
and energy production (including photosynthesis)
were more abundant in the ocean (Fig. 7C).

Functional variability across ocean
depths and regions

Functional redundancy across different taxa in
microbial communities has been suggested to
confer a buffering capacity for an ecosystem in
scenarios of biodiversity loss (48). When con-
trasting taxonomic and functional variability
in the ocean, we indeed found high taxonomic
variability (even at phylum level) accompanied
by relatively stable distributions of gene abun-
dances summarized into functional categories
(47) (Fig. 8A). This is also congruent with previous
reports for the human gut, where gene abun-
dances of metabolic pathways were found to be
evenly distributed across samples, while tax-
onomic compositions varied markedly between
subjects (49). Thus, despite the presumably greater
environmental complexity in the ocean, the con-
gruent functional redundancy observed in both
ecosystems may be indicative of an ecosystem-
independent property of microbial communities.
We next differentiated ocean core from non-

core OGs, as the latter are more relevant for
environment-specific adaptations. Within the
ocean, 67% (SD = 5%) of the total gene abun-
dance was attributed to ocean core OGs. After
removing these and the 29% (SD = 5%) of gene
abundance from genes that were not assigned
to any OG, 4% (SD = 1%) remained as the non-
core fraction. The abundance distribution among
these noncore OGs, of which the largest fraction
encode unknown functions, displayed a much
greater variability across samples even when
summarized into functional categories (Fig. 8A).
Thus, in addition to the stable abundance dis-
tribution of core functional processes, as reported
here and for human body habitats (49), func-
tional variation similar in scale to that of the
phylogenetic one can be detected when focusing
on noncore, potentially adaptive gene families.
As an example for such an environmental adapt-
ation, we found an increase in lipid metabolism in
oxygen minimum zones of the Eastern Pacific and
Northern Indian Ocean (Fig. 8A).
Finally, to globally investigate the functional

basis for the large community structural differences
between the epipelagic layer and mesopelagic
zone (Fig. 3A), we defined depth-specific core
OGs using the approach introduced above. Un-
expectedly, we found that the epipelagic core is
almost completely contained in the mesope-
lagic core (Fig. 8B). When testing between-depth
functional differences (Fig. 8B), we observed an
enrichment of aerobic respiration genes in the ven-
tilated mesopelagic zone, which is coherent with
the finding that the mesopelagic zone is a key
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Fig. 6. Temperature as main environmental driver for microbial community composition in the epi-
pelagic layer. (A) The strength of association between (meta)genomic and environmental data was
tested by statistical models that were first generated with a subset of data for training and then validated
on the remaining data. The prediction accuracy was used as a measure for the strength of association.
Models that were trained on subsets of taxonomic data from surface water (SRF) samples could predict
with high accuracy temperature and dissolved oxygen of samples used for validation (left). Models
trained with subsets of taxonomic data from deep chlorophyll maximum (DCM) samples could predict
temperature with high accuracy, but could predict dissolved oxygen with only moderate accuracy
(middle). To demonstrate across-depth conservation of associations, we show that models trained on
data from SRFsamples could highly predict temperature, but failed to predict dissolved oxygen in DCM
samples. (B) To illustrate prediction accuracy, and thus, strength of association between taxonomic
composition (using 16S mitag abundances) and temperature, we show that in situ measured tem-
perature could be predicted with 86% explained variance.The red diagonal shows the theoretical curve
for perfect predictions. Sanger sequencing reads from the GOS project were used to calculate relative
genus abundance tables. Using temperature prediction models trained at genus level using Tara
Oceans data, we show (inset) that the results could be validated at relatively high accuracy given the
large differences in sampling and sequencing methods between these two studies.
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remineralization site of exported production (50).
Flagellar assembly and chemotaxis were also en-
riched in mesopelagic samples, which is in con-
trast to previous findings (51) but congruent with
the model that motility reduces grazing mor-
tality in planktonic bacteria (52). In addition,
these motility traits are potentially of great uti-
lity for bacteria in the dark ocean to colonize
sinking particles or marine snow aggregates.
Our taxonomic analysis (Fig. 2), combined with
the detection of photosynthesis genes in the
mesopelagic zone (Fig. 8B), indeed suggests
microbial sedimentation from the epipelagic
layer into the mesopelagic zone. Moving among
aggregates to exploit nutrient patches and poten-
tially new niches (34) may drive the diversification
of mesopelagic zone–adapted microbial popula-
tions (53). In the future, matching Tara Oceans
metatranscriptomic data should help in differ-

entiating active from dead sinking biomass and
give further insights into how microbial com-
munities contribute to remineralization and car-
bon export into the ocean interior.

Conclusions

Tara Oceans has generated, in addition to global
biodiversity resources for larger organismal size
spectra (20), the OM-RGC, which makes ocean
microbial genetic diversity accessible for various
targeted analyses. Here we analyzed prokaryote-
enriched size fractions, whereas related papers
studied viral ecology (19), cross-kingdom species
interactions (21), and planktonic community
connectivity across an ocean circulation choke-
point (22). Despite some limitations in the sam-
pled organismal size range, oceanic depth layers,
and temporal resolution, our approach generated
an ecosystem-wide data set that will be useful for

improving predictive models of the ocean. Finding
that temperature drives microbial community var-
iation and revealing the high functional redun-
dancy in ocean microbial communities at global
scale have wide-ranging implications for poten-
tial climate change–related effects. The Tara Oceans
data set supports progress not only toward a ho-
listic understanding of the ocean ecosystem but
also of microbial communities in general, by facil-
itating comparative analyses between ecosystems.

Materials and methods

Sample and environmental
data collection

From 2009 to 2013, morphological, genetic, and
environmental data were collected at >200 sam-
pling stations across all major oceanic provinces
during the Tara Oceans expedition. The sam-
pling strategy and methodology are described in
(54–57). Sampling and enumeration of hetero-
trophic prokaryotes, phototrophic picoplankton,
and small eukaryotes by flow cytometry followed
previously described procedures, which are sum-
marized in (58). Sample provenance is described
in table S1 and in (55). Sample-associated envi-
ronmental data and sample-associated biodi-
versity indexes were inferred at the depth of
sampling (56, 57), and additional information
is available at (14).

Extraction and sequencing
of metagenomic DNA

Metagenomic DNA from prokaryote and girus-
enriched size fraction filters, and from precipi-
tated viruses, was extracted as described in (12),
(59), and (19), respectively. DNA (30 to 50 ng)
was sonicated to a 100– to 800–base pair (bp)
size range. DNA fragments were subsequently
end repaired and 3′-adenylated before Illumina
adapters were added by using the NEBNext Sam-
ple Reagent Set (New England Biolabs). Ligation
products were purified by Ampure XP (Beckmann
Coulter), and DNA fragments (>200 bp) were PCR-
amplified with Illumina adapter-specific primers
and Platinum Pfx DNA polymerase (Invitrogen).
Amplified library fragments were size selected
(~300 bp) on a 3% agarose gel. After library pro-
file analysis using an Agilent 2100 Bioanalyzer
(Agilent Technologies, USA) and quantitative PCR
(MxPro, Agilent Technologies, USA), each library
was sequenced with 101 base-length read chemis-
try in a paired-end flow cell on Illumina sequenc-
ing machines (Illumina, USA).

Metagenomic sequence assembly
and gene predictions

Using MOCAT (version 1.2) (18), high-quality (HQ)
reads were generated (option read_trim_filter;
solexaqa with length cut-off 45 and quality cut-
off 20) and reads matching Illumina sequencing
adapters were removed (option screen_fastafile
with e-value 0.00001). Screened HQ reads were
assembled (option assembly; minimum length
500 bp), and gene-coding sequences [minimum
length 100 nucleotides (nt)] were predicted on
the assembled scaftigs [option gene_prediction;
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Fig. 7. Ocean versus human gut core orthologous groups. (A) The number of orthologous groups
(OGs) that were shared among randomly selected sets of samples with sizes ranging from 1 to 139 was
computed. With increasing sample size, the number of shared orthologous groups decreased first
rapidly, then more gradually to a minimum of 5755 OGs at 139 samples, which was considered the set of
ocean core OGs. Purple boxplots show the data for all OGs; blue boxplots show the data for OGs of
known function. (B) Comparative statistics between ocean and human gut core OGs, showing that for a
large fraction of ocean core OGs (40%), the functionality is unknown, which is in stark contrast to the
human gut ecosystem (9%). Ocean core OGs are further subdivided into groups of OGs that are
commonly (>50%), uncommonly (10% to 50%), or rarely (<10%) found in marine reference genomes.
(C) A comparison of ocean and human gut core OGs (left) shows a large overlap of functions between
these two fundamentally different ecosystems both qualitatively and quantitatively. The bar chart (right)
displays a comparison of gene abundance summarized into OG functional categories to illustrate
functional enrichments. Asterisks denote Mann-Whitney U-test results (**P < 0.01, ***P < 0.001).
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MetaGeneMark (version 2.8) (60)], generating
a total of 111.5 M gene-coding sequences (14).
Assembly errors were estimated by testing for
colinearity between assembled contigs and genes
and unassembled 454 sequencing reads by using
a subset of 11 overlapping samples (58). From
this analysis, we estimate that 1.5% of contigs
had breakpoints and thus may suffer from er-
rors (14). This error rate is more than a factor
of 6.5 less than previous estimates of contig
chimericity in simulated metagenomic assem-
blies (9.8%) with similar N50 values (61).

Generation of the ocean microbial
reference gene catalog
Predicted gene-coding sequences were combined
with those identified in publicly available ocean
metagenomic data and reference genomes: 22.6 M
predicted genes from the GOS expedition (6, 7),
1.78M from Pacific Ocean Virome study (POV) (62),
14.8 thousand from viral genomes from theMarine

Microbiology Initiative (MMI) at the Gordon &
Betty Moore Foundation (14), and 1.59 M from
433 ocean microbial reference genomes (14). The
reference genomes were selected by the following
procedure: An initial set of 3496 reference ge-
nomes (all high-quality genomes available as of
23 February 2012) was clustered into 1753 species
(24), from each of which we selected one repre-
sentative genome. After mapping all HQ reads
against these genomes, a genome was selected if
the base coverage was >1× or if the fraction of
genome coverage was >40% in at least one sam-
ple. In addition, we included prokaryotic ge-
nomes for which habitat entries matched the
terms “Marine” or “Sea Water” in the Integrated
Microbial Genomes database (63) or if a ge-
nome was listed under the Moore Marine Mi-
crobial Sequencing project (64) as of 29 July
2013. Finally, we applied previously established
quality criteria (24), resulting in a final set of
433 ocean microbial reference genomes (14). For

data from GOS, POV, and MMI, assemblies were
downloaded from the CAMERA portal (64). A
total of 137.5 M gene-coding nucleotide sequences
were clustered by using the same criteria as in
(16); i.e., 95% sequence identity and 90% alignment
coverage of the shorter sequence. The longest se-
quence of each cluster was selected, and after re-
moving sequences <100 nt, we obtained a set of
40,154,822 genes [i.e., nonredundant contiguous
gene-coding nucleotide sequences operationally
defined as “genes”; see also (16, 17)] that we refer
to as the Ocean Microbial Reference Gene Catalog
(OM-RGC).

Taxonomic and functional annotation
of the OM-RGC

We taxonomically annotated the OM-RGC using
a modified dual BLAST-based last common an-
cestor (2bLCA) approach as described in (58). For
modifications, we used RAPsearch2 (65) rather
than BLAST to efficiently process the large data
volume and a database of nonredundant protein
sequences from UniProt (version: UniRef_2013_07)
and eukaryotic transcriptome data not repre-
sented in UniRef. The OM-RGC was functionally
annotated to orthologous groups in the eggNOG
(version 3) and KEGG databases (version 62) with
SmashCommunity (version 1.6) (46, 66, 67). In
total, 38% and 57% of the genes could be anno-
tated by homology to a KEGGortholog group (KO)
or an OG, respectively. Functional modules were
defined by selecting previously described key
marker genes for 15 selected ocean-related pro-
cesses, such as photosynthesis, aerobic respiration,
nitrogen metabolism, and methanogenesis (14).
Taxonomic profiling using 16S tags and meta-

genomic operational taxonomic units 16S frag-
ments directly identified in Illumina-sequenced
metagenomes (mitags) were identified as described
in (12). 16S mitags were mapped to cluster cen-
troids of taxonomically annotated 16S reference
sequences from the SILVA database (23) (release
115: SSU Ref NR 99) that had been clustered at
97% sequence identity with USEARCH v6.0.307
(68). 16S mitag counts were normalized by the
total sum for each sample. In addition, we iden-
tified protein-coding marker genes suitable for
metagenomic species profiling using fetchMG
(13) in all 137.5 M gene-coding sequences and
clustered them into metagenomic operational
taxonomic units (mOTUs) that group organisms
into species-level clusters at higher accuracy than
16S OTUs as described in (13, 24). Relative abun-
dances of mOTU linkage groups were quantified
with MOCAT (version 1.3) (18).

Functional profiling using the OM-RGC

Gene abundance profiles were generated by map-
ping HQ reads from each sample to the OM-RGC
(MOCAT options screen and filter with length
and identity cutoffs of 45 and 95%, respectively,
and paired-end filtering set to yes). The abun-
dance of each reference gene in each sample was
calculated as gene length–normalized base and
insert counts (MOCAT option profile). Functional
abundances were calculated as the sum of the
relative abundances of reference genes, or key
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Fig. 8. Functional structuring of the ocean microbiome. (A) Phylum-level (class-level for Proteobac-
teria) taxonomic variability is higher (top, median relative SD = 65%) relative to the functional composition
(OG functional categories) of ocean microbial samples (center, median relative SD = 7%). Removal of
functions that are ubiquitous in the ocean environment reveals the variable, noncore fraction (bottom,
median relative SD = 47%), which amounts on average to 4% of the total gene abundance. Red triangles
on x axis highlight mesopelagic samples collected in oxygen minimum zones of the Indian Ocean and
Eastern Pacific, which show increased levels of lipid metabolism in noncore functions. (B) Venn diagram
(left) showing that core OGs in the epipelagic layer of the ocean are almost completely contained in
mesopelagic core OGs (left). The bean charts (right) display differential abundances of marker genes
(based on KO annotations) for selected functional processes in the ocean. Asterisks denote Mann-Whitney
U test results (***P < 0.001).
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marker genes (14), annotated to different func-
tional groups (OGs, KOs, and KEGG modules).
For each functional module, the abundance was
calculated as the sum of relative abundances of
marker KOs normalized by the number of KOs.
For comparative analyses with the human gut
ecosystem, we used the subset of the OM-RGC that
was annotated to Bacteria or Archaea (24.4 M
genes). Using a rarefied (to 33 M inserts) gene
count table, an OG was considered to be part of
the ocean microbial core if at least one insert from
each sample was mapped to a gene annotated
to that OG. Samples from the human gut ecosys-
tem were processed similarly, and a list of all OGs
that were defined in either the ocean or the gut as
core is provided in (14).

Microbial community structural
analyses and prediction of
minimum generation times

16S mitag counts were rarefied 100 times to the
minimum number of total 16S mitags per sample
(39,410), and OTU richness and Chao1 richness
estimators were calculated as the mean of all
rarefactions (14). A phylogenetic tree of 16S mitags
was calculated from full-length 16S sequences,
by using parts of the LotuS 16S pipeline (69). This
phylogenetic tree was midpoint rooted in R and
used with the mitag abundance matrix rarefied to
39,000 reads per sample to calculate Faith’s phy-
logenetic diversity (70) as the mean value of five
repetitions (14). Similarly, OG richness was com-
puted as the average of 10 rarefactions (14). Com-
munity growth potential from genomic traits was
estimated as the average minimum generation
time of the organisms present in the sample,
weighted by their abundance, as previously de-
scribed (32).

Distance correlations between genomic
and environmental data

We computed pairwise distances between sam-
ples on the basis of (i) relative abundances of
taxonomic (16S mitags and mOTUs) and gene
functional compositions (at KEGG module level)—
the compositional data; (ii) in situ measurements
of physicochemical data—the environmental data;
and (iii) geographic location of sampling stations—
the geographic data. Data from the three south-
ernmost stations were removed from the analysis,
as these stations are outside the range of the rest
of the data in parameters such as temperature,
oxygen, and nutrients. For compositional data,
we applied a logarithmic transformation to rela-
tive abundances using the function log10(x + x0),
where x is the original relative abundance and x0
is a small constant, and x0 < min(x).
We applied an additional low-abundance filter,

which removed features whose relative abun-
dance did not exceed 0.0001 in any sample. En-
vironmental data were transformed to z-scores
before calculating distances. We used Euclidean
distances for compositional and environmental
data and Haversine distances for geographic data.
Given these distance matrices, we computed par-
tial Mantel correlations between compositional
and environmental data given geographic dis-

tance (9,999 permutations) using the vegan R
software package. Partial Mantel tests were also
performed between species richness and both
temperature and latitude, while controlling for
season.

Statistical modeling and
correlation analysis

Compositional data (see above) were normal-
ized to ranks across samples and then used to
learn a regression model to predict environ-
mental measures. In particular, we fitted an
elastic net model (44) using inner cross-validation
to set the hyperparameters as implemented by
the scikit-learn Python package (71). For spatial
autocorrelation-corrected cross-validation, sam-
ples from each ocean basin were iteratively held
out for testing on a model learned from the rest
of the samples.
As a measure of association between the en-

vironmental parameter and the compositional
data, we computed the cross-validated R2 (also

known as Q2) (72), defined as 1 − ∑
ðyi − ⌢yiÞ2
ðyi − yiÞ2

,

where yi is the value of the parameter for sam-
ple i, ⌢yi is the prediction for that same sample
(obtained by held-out cross-validation), and y is
the overall mean (the summation runs over all
the samples). To disentangle effects of tempera-
ture and oxygen, we trained models on surface
samples, which were then evaluated in DCM sam-
ples. Again, to avoid spatial autocorrelation, cross-
validation by ocean basin was used. An external
cross-validation was performed by classifying GOS
reads using the RDP database (73). Only genera
detected in both studies were considered. Because
of the lower and varying sequencing depth of the
GOS data, for each GOS sample, we downsampled
Tara Oceans data to match the corresponding se-
quencing depth and learned a model based on
this downsampled data set. This model was based
on the presence or absence of the taxa (which
was modeled by passing a binary input matrix
to the elastic net fitting routines).
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